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Abstract. The theory of interactions between lasers and coldon system devised by Cirac and Zoller [3]. Their design,
trapped ions as it pertains to the design of Cirac—Zollewhich is shown schematically in Fig. 1, consists of a string
quantum computers is discussed. The mean positions of tlod ions stored in a linear radiofrequency trap and cooled suf-
trapped ions, the eigenvalues and eigenmodes of the ionftiently so that their motion, which is coupled together due
oscillations, the magnitude of the Rabi frequencies for botto the Coulomb force between them, is quantum mechanical
allowed and forbidden internal transitions of the ions, and thén nature. Each qubit would be formed by two internal levels
validity criterion for the required Hamiltonian are calculated.of each ion, a laser being used to perform manipulations of
Energy level data for a variety of ion species are also presenthe quantum mechanical probability amplitudes of the states,

ed. conditional two-qubit logic gates being realized with the aid
of the excitation or de-excitation of quanta of the ions’ collec-
PACS: 32.80.Qk; 42.50.Vk; 89.80.+h tive motion. For a more detailed description of the concept of

cold-trapped ion quantum computation, the reader is referred

to the article by Steane [4].
A quantum computer is a device in which data can be stored There are two distinct possibilities for the choice of the
in a network of quantum mechanical two-level systems, suctnternal levels of the ion: first, the two states could be the
as spini/2 particles or two-level atoms. The quantum me-ground state and a metastable excited state of the ion (or more
chanical nature of such systems allows the possibility oprecisely, sublevels of these states) and second, the two states
a powerful new feature to be incorporated into data proeould be two nearly degenerate sublevels of the ground state.
cessing, namely, the capability of performing logical operain the first case, a single laser would suffice to perform the re-
tions upon quantum mechanical superpositions of humberguired operations; in the second, two lasers would be required
Thus in a conventional digital computer each data register igp perform Raman transitions between the states, via a third
throughout any computation, always in a definite state “1” olevel. Both of these schemes have advantages: the first, which
“0”; however in a quantum computer, if such a device can will refer to as the “single photon” scheme, has the great
be realized, each data register (or “qubit”) will be in an un-advantage of conceptual and experimental simplicity; the sec-
determined quantum superposition of two staf®@sand|0).  ond, the “Raman scheme”, offers the advantages of a very low
Calculations would then be performed by external interac-
tions with the various two-level systems that constitute the
device, in such a way that conditional gate operations involv-
ing two or more different qubits can be realized. The final
result would be obtained by measurement of the quantum
mechanical probability amplitudes at the conclusion of the
calculation. Much of the recent interest in practical quantum
computing has been stimulated by the discovery of a quan-
tum algorithm that allows the determination of the prime
factors of large composite numbers efficiently [1] and of cod
ing schemes that, provided operations on the qubits can b?

performed within a certain threshold degree of accuracy, will Laser =~ ) -
allow arbitarily complicated quantum computations to be per- Beam . ions
formed reliablyregardless of operational errde].

So far,. the most promisjng hardware proposed for im+ig. 1. A schematic diagram of ions in a linear trap to illustrate the notation
plementation of such a device seems to be the cold-trappeged in this article
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rate for spontaneous decay between the two nearly degener#tat this is an unconventional use of the symbavhich often
states and resilience against fluctuations of the phase of tlienotes frequency rather than angular frequency; following
laser. This later scheme was recently used by the group hea@iac and Zoller, | will use» to denote the angular frequen-
ed by Dr. D.J. Wineland at the National Institute of Sciencecies of the laser or the transitions between internal states of
and Technology at Boulder, Colorado to realize a quanturthe ions, and to denote angular frequencies associated with
logic gate using aingletrapped Beryllium ion [5]. the motion of the ions.

In this article, | will discuss the theory of laser interactions ~ Assume that the ions are sufficiently cold that the position
with cold trapped ions as it pertains to the design of a Cirac-ef themth ion can be approximated by the formula
Zoller quantum computer. | will concentrate on the “single
photon scheme” as originally proposed by those authors, akm(t) & X + gm(t) 2)
though much of the analysis is also relevant to the “Raman
scheme”. Fuller accounts of aspects of this are available iwherex(? is the equilibrium position of the ion, argh(t) is
the literature: see, for example, [4, 6, 7]; however the derivaa small displacement. The equilibrium positions will be deter-
tion of several results are presented here for the first time.mined by the following equation:
will also present relevant data gleaned from various source
on some species of ion suitable for use in a quantum comp{-ﬂ} —0. 3)

OXm J x=x(@

tation.
If we define the length scaleby the formula

3 2%
"~ dgegMy?

1 Equilibrium positions of ions in a linear trap

Let us consider a chain dfl ions in a trap. The ions are ¢ )

assumed to be strongly bound in thieand z directions but

weakly bound in an harmonic potential in telirection. The  and the dimensionless equilibrium positian = x© /¢, then
position of themth ion, where the ions are numbered from (3) may be rewritten as the following set Nf coupled alge-
left to right, will be denoted,(t). The motion of each ion braic equations for the values of;:

will be influenced by an overall harmonic potential due to the

trap electrodes and by the Coulomb force exerted by all of the ~ T—1 1 N 1
other ions. We will assume that the binding potential inyhe Um— Z Um—un)?2 + Z Um—un)? =0
andz directions is sufficiently strong that motion along these n=1 MmN n=mt+1 M0

axes can be neglected. However, motion of the ions trans-
verse to the trap axis can be important in some circumstances:
Garg [8] has pointed out that such motion can be a source &for N =2 andN = 3, these equations may be solved analyt-
decoherence; furthermore if a large number of ions are storgdally:
in the trap, the transverse vibrations can become unstable,

and the ions will adopt a zigzag configuration [9]. Hence theN = 2:
potential energy of the ion chain is given by the following N — 3.
expression:

m=12...N. (5

up=—(1/2)%°,
up = —(5/H"°,

up = (1/2)%3, (6)
u=0, uz=(5/HY3. (7)

For larger values oN it is necessary to solve for the values
of um numerically. The numerical values of the solutions to
@ these equations f@to 10ions is given in Table 1. Determin-
ing the solutions for larger numbers of ions is a straightfor-
ward but time consuming task.
whereM is the mass of each iom,is the electron charge; By inspection, the minimum value of the spacing between
is the degree of ionization of the iong, is the permitivity of  two adjacent ions occurs at the center of the ion chain. Com-
free space, andis the trap frequency, which characterizes thepiling the numerical data for the minimum value of the sep-
strength of the trapping potential in the axial direction. Notearation for different numbers of trapped ions, we find that it

N N
1 2% 1
V=Y ZMxn(t)?+ ;
2 MO D G T O

mzn

Table 1. Scaled equilibrium positions of the trapped ions for different total numbers offions

N Scaled equilibrium positions
2 —0.62996 062996
3 —-1.0772 10772
4 —1.4368 —0.45438 045438 14368
5 —1.7429 —-0.8221 08221 17429
6 —2.0123 —1.1361 —0.36992 036992 11361 20123
7 —2.2545 —1.4129 —0.68694 068694 14129 22545
8 —2.4758 —1.6621 —0.96701 —0.31802 031802 096701 16621 24758
9 —2.6803 —1.8897 —1.2195 —0.59958 059958 12195 18897 26803
10 —2.8708 —2.10003 —1.4504 —0.85378 —0.2821 02821 085378 14504 210003 28708

@ This data was obtained by numerical solutions of (5). The length scale is given by (4)
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obeys the following relation: Since the matrixA,ny, is real, symmetric, and non-negative
definite, its eigenvalues must be non-negative. The eigenvec-
Ny & 2018 g) torsb¥ (p=1,2,---N) are therefore defined by the follow-
umln( ) ~ 0.559 ° ( ) . .
NO- ing formula:

This relation is illustrated in Figure 2. Thus the minimum y
inter-ion spacing for different numbers of ions is given by theZ Anmb® = 1106 (p=1,...,N) (13)
following formula: n PPm s eee s N)

n=1
z2¢ \"° 2018 whereup > 0. The eigenvectors are assumed to be numbered
Xmin(N) = AegM12 NO.559 ° ©)  in order of increasing eigenvalue and to be properly normal-
ized so that
This relationship is important in determining the capabilities N
of cold-trapped ion quantum computers [10]. Z BPBP = S (14)
p=1
2 Quantum fluctuations of the ions N
> bPb = 5. (15)

This section discusses the equations of motion that descrilve1
the displacements of the ions from their equilibrium posi- he fi . ) he ei ith th "
tions. Because of the Coulomb interactions between the ions, . 1€ first eigenvector (i.e., the eigenvector with the small-
the displacements of different ions will be coupled together€St €igenvalue) can be shown to be

The Lagrangian describing the motion is then 1
b = —1,1,---,1}, wu1=1. (16)
N N
M 1 a°V
L=— (@m?-2= 1 .
2 ;(Qm) 2 n%;l nim [axnaxm}o ’ 0 e next eigenvector can be shown to be

where the subscript 0 denotes that the double partial derivg® — 1

tive is evaluated af, = g = 0, and we have neglected terms (ZN u2
Ol[q?]. The partial derivatives may be calculated explicitly to m=1"m
give the following expression:

77U, Uz, -+ L UNY,  p2=3. (17)

Higher eigenvectors must, in general, be determined numeri-
cally; (15) and (16) imply that

N N
M
L= | D @m?=v* 3 AunlnGm | . 1w
m=1 nm=1 > bP =0 if p#1. (18)
where m=t
N For N =2 andN = 3, the eigenvectors and eigenvalues may
142y —L _ ifn=m, be determined algebraically:
_ — [Um—Upl 12
Anm = pp#m (12) o 1
lum:inls |fn7ém N=2: b 272(1, 1), /,L]_:l,
1
b? = —-(-1,1), =3, 19
ﬁ( )s M2 (19)
1.2 ; .

1
N=3: b(l)=%(l,l,l), n1=1,

Py
r

1
b? = 72(—1, 0,1), w2=3,

o
o
T

1
b® — 76(1’ -2,1), pu3=29/5. (20)

o
'S
T

For larger values oN, the eigenvalues and eigenvectors must
be determined numerically; their numerical valuesXoo 10
ions are given in Table 2.

0 [ [ K 1 The normal mode®f the ion motion are defined by the

0 10 20 30 40 50 formula
Number of Ions, N

Minimum Jon Separation
(scaled units)
o
o
T

o
IS

N

Fig. 2. The relationship between the number of trapped iNrend the min- o (p)

imum separation. The curve is given by (8) while the points come from ther(t) - Z bm m(®) - (21)
numerical solutions of the algebraic equations (5) m=1
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Table 2. Numerically determined eigenvalues and eigenvectors of the magrixdefined by (12), for 2 to 10 ion%

Eigenvalue Eigenvector
N=2 1 ( Q7071 07071)
3 (-0.7071, 07071)
N=3 1 ( 05774, 05774, 05774)
3 (-0.7071, O, 07071)
5.8 ( 04082, -0.8165, 04082)
N=4 1 ( 05, 05, 05, 05)
3 (—0.6742, —0.2132, 02132, 06742)
5.81 ( 05, —-0.5, -0.5, 05)
9.308 (~0.2132, 06742, —0.6742, 02132)
N=5 1 ( 04472, 04472, 04472, 04472, 04472)
3 (-0.6395, —0.3017, 0, 03017, 06395)
5.818 ( 05377, —-0.2805, -—0.5143, —0.2805, 05377)
9.332 (-0.3017, 06395, 0, —0.6395, 03017)
13.47 ( 01045, —-0.4704, 07318, —0.4704, 01045)
N=6 1 ( 04082, 04082, 04082, 04082, 04082, 04082)
3 (—0.608, —0.3433, —-0.1118, 01118, 03433, 0608)
5.824 (-0.5531, 01332, 04199, 04199, 01332, —0.5531)
9.352 ( 03577, -0.5431, -0.2778, 02778, 05431, -—0.3577)
1351 ( 01655, -0.5618, 03963, 03963, —0.5618, 01655)
1827 (—0.04902, 02954, —0.6406, 06406, —0.2954, 004902)
N=7 1 ( 0378, 0378, 0378, Q378, Q378, Q378, Q378)
3 (-0.5801, -0.3636, —0.1768, 0, 01768, 03636, 05801)
5.829 (~0.5579, 0031, 03213, 04111, 03213, 0031, —0.5579)
9.369 (-0.3952, 0445, 03818, 0, —0.3818, —0.445, 03952)
1355 (—0.213, 05714, -0.1199, -04769, -0.1199, 05714, —-0.213)
1832 ( 008508, —0.4121, 05683, 0, —0.5683, 04121, —0.08508)
23.66 ( 002222, —0.1723, 04894, —0.6787, 04894, —0.1723, 002222)
N=8 1 ( 03536, 03536, 03536, 03536, 03536, 03536, 03536, 03536)
3 (-0.5556, —-0373, -0.217, —0.07137, 007137, 0217, Q373, 05556)
5.834 (—-0.5571, —0.0425, 02362, 03634, 03634, 02362, —0.0425, -0.5571)
9.383 ( 04212, -0.3577, —0.4093, —0.1647, 01647, 04093, 03577, —0.4212)
1358 (—0.2508, 05479, 00669, —0.364, —0.364, 00669, 05479, —0.2508)
1837 ( 01176, -0.4732, 04123, 03039, -0.3039, -0.4123, 04732, —0.1176)
2373 (—0.04169, 02703, -—0.561, 03324, 03324, —0.561, 02703, —0.04169)
29.63 (—0.009806, 009504, —0.3398, 06127, —0.6127, 03398, —0.09504,  (0009806)

N=9 1 ( 03333, 03333, 03333, 03333, 03333, 03333, 03333, 03333, 03333)
3 (—0.5339, -0.3764, —0.2429, —0.1194, 0, 01194, 02429, 03764, 05339)
5.838 (-0.5532, —0.09692, 01658, 03078, 03531, 03078, 01658, —0.09692, —0.5532)
9.396 (—0.4394, 02828, 04019, 02558, 0, —0.2558, —-0.4019, -0.2828, 04394)
136 ( 02812, -05108, —0.1873, 02228, 03881, 02228, —0.1873, -0.5108, 02812)
1841 ( 01465, —0.5015, 02582, 04005, 0, —0.4005, —0.2582, 05015, —0.1465)
2379 ( 006133, —0.3407, 05274, —0.02271, —0.4505, —0.02271, 05274, -0.3407, 006133)
29.71 (—0.01969, 01639, -0.4614, 05098, 0, —0.5098, 04614, —-0.1639, 001969)
36.16 (—0.004234, 05021, —0.2195, 04939, —0.6408, 04939, —0.2195, 005021, —0.004234)

N=10 1 ( 03162, 03162, 03162, 03162, 03162, 03162, 03162, 03162, 03162, 03162)
3 (—0.5146, -0.3764, —0.26, —0.153, —0.05056, 005056, 0153, 026, 03764, 05146)
5.841 (-0.5476, -—0.1382, 01079, 02544, 03235, 03235, 02544, 01079, -0.1382 —0.5476)
9.408 ( 04524, -0.2189, -0.3786, —0.3024, -—0.1123, 01123, 03024, 03786, 02189  —0.4524)
1363 ( 03059, -0.4689, —0.2629, 009726, 03287, 03287, 009726, —0.2629, —0.4689 03059)
1845 ( 01721, -—-0.5098, 01267, 03959, 0194, —0.194, —0.3959, -0.1267, 05098, —0.1721)
2385 ( 008046, —0.3902, 04528, 01795, —0.3225, -0.3225, 01795, 04528, —0.3902, 008046)
29.79 ( 003062, —0.2232, 0505, —0.3078, —0.3154, 03154, 03078, —0.505, 02232, —0.03062)
36.26 (—0.009023, 009371, —0.338, 05419, -0.2886, —0.2886, 05419, -0.338, Q09371 —0.009023)
4324 ( 0001795,—-0.0256, 0134, —0.3656, 05897, —0.5897, 03656, —0.134, 00256, —0.001795)

@ The eigenvectors are normalized as defined by (15)
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The first modeQ; (t) corresponds to all of the ions oscillating and for the breathing mode
back and forth as if they were rigidly clamped together; this

is referred to as theenter of massnode. The second mode JN 1
Qz(t) corresponds to each ion oscillating with an amplitudes? = = igUm v2= V3. (30)
proportional to its equilibrium distance form the trap center; 73 (Zm—l ur2n>

This is called théreathing modeThe Lagrangian for the ion

oscillations (11) may be rewritten in terms of these normal _ ) )
modes as follows: The Lagrangian equation (10) was derived from a Tay-

lor expansion of the potential function about the equilibrium

N .y . 3 . .
M . positions of the ions, term®[q3] being neglected. The ratio
L= > Z [Q5—v5Q3] . (22)  of the strengths of the neglecnted terms to the strength of the
p=1 guadratic terms, which are included, is, for low phonon num-

_ _ bers, of the order ofhV/8Mc?>N3a?)Y8, whereu is the fine
where the angular frequency of tipth mode is defined by strycture constant. Clearly this dimensionless quantity must
be small if the approximation we have made is to be valid; for
Vp = /ItpV. (23) example, if we consider a singlea Il ion in a trap with axial
. o frequencyv = (27) x 500 KHz it has the valu€.2 x 1072,
This expressionimplies that the mod@g are uncoupled.  the pegiected terms will however important because they
Thus the canonical momentum conjugat€pis P, =MQp  give a coupling between different phonon modes which may

and one can immediately write the Hamiltonian as be a source of decoherence.
Aoty e My g (24)
T 2M p 2 p=p-
p=1 p=1

3 Laser-ion interactions
The quantum motion of the ions can now be considered by

introducing the operators _ . . _ . .
I will now consider the interaction of a laser field with the

. h trapped ions. The theory must take into acount both the in-
Qp— Qp=i [z— (8, —4a)), (25) ternal and vibrational degrees of freedom of the ions. | will
2Mv p . .. . ..
p consider two types of transition between internal ionic lev-
. hMuv els: the familiar electric-dipole allowed (E1) transitions and
Po— Pp=,/ 5 p(ép+éT) (26)  dipole forbidden electric quadrupole (E2) transitions. Elec-

tric quadrupole transitions have been considered in detail by

A A . . . Freedhoff[14, 15]. The reason for considering forbidden tran-
WAhereAQp qnd Pp obey the caponlcal comlrn.uta.1t|on relation sitions is that they have very long decay lifetimes; sponta-

[?P’ Ppl = ihdpq and the creation and annlhllatloTn Operatorsyagys emission will destroy the coherence of a quantum com-
ap anda, obey the usual commutation relatifay, ;] = dps-  puter, and therefore is a major limitation on the capabilities
Using this notation, the interaction picture operator for thepf such devices [10, 16]. Magnetic dipole (M1) transitions,
displacement of thenth ion from its equilibrium position is  which also have long lifetimes, tend only to occur between
given by the formula: sub-levels of a configuration and will therefore require, when

using the single photon scheme, long wavelength lasers in

_ N B A order to excite them. As it is necessary to resolve individual
Gm(® =D bP Qp(® ions in the trap using the laser, the use of long wavelengths
p=1 will seriously degrade performance. Transitions between sub-

. h N - - levels of a configuration are however possible using the
=i,/ SN D s (@pe Mt —aje ), (27)  Raman scheme. More highly forbidden transitions are also

p=1 a possibility for use in a quantum computer. In particular,

. ) ] there is an octupole allowed (E3) transition of the Mmll
where the coupling constant is defined by at467 nmwith a theoretical lifetime of..325x 10° sec[17],
which has recently been observed at the National Physical

o _ VNbBY 28) Laboratory at Teddington, England [18]. However, such weak
Smo = Mr1)/4 transitions can only be excited by either very long laser pulses
or by very powerful lasers. Since it is impossible to maintain
For the center of mass mode, the phase stability of a laser indefinitely, very long duration
pulses (i.e., more tharr 100 msegare not practicable. Very
V=1 v =v, (29)  high laser power can cause a break-down of the two-level ap-

proximation, as highly detuned dipole transitions can become
excited. Thus it appears that suarylong lived states may

1There_ is some arbitariness in the definition of the operakyraind Qp, not in fact give any particular advantages for quantum com-
which is related to the arbitrariness of the phase of the Fock states. | ha\ﬁutin
used the definitions given by Kittel ( [11], p. 16), which differs from that f? . . . il . f | ic dipol

given in other texts on quantum mechanics (see, for example, [12] p. 183 | he Interaction picture Hamiltonians for electric dipole

or [13] p. 36). (E1) and electric quadrupoleeg) transitions of themth ion,
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located atx, are where we have neglected terms involvigg(t)2. It is con-
venient to write the displacement of the ion in terms of the
AR = ieZwMN INY(M](N]|Ffi [M)Aj (xm, hEMNt(31)  creation and annihilation operators of the phonon modes, viz.,

MN
. N
~ e : ’ )
AI™ = 23 omn N (MI(NIFi £ M) 3 A (X, et K COSHm (1) =i7'7ﬁ > s (ape "t —afe™) (42)
MN p=1

(32)

, ) . wheren = ,/hk2cog6/2Mv is called the Lamb-Dicke pa-
where A;(x, t) is the jth component of the vector potential 5meter.

of the laser fieldy; denotes differentiation along théh di- Similarly if the standing wave is arranged so that the ion
rection and summation over repeated indi¢e$ =X, y, 2)is g at anantinodei.e.,
implied; f; is theith component of the position operator for
the valence electron of the iofN)} is the set of all eigen- . 2 =i
states of the unperturbed ion and the transition frequency fan(t) = ———— +€0S9m(1). (43)
ovN = wom — oy Where the energy of thith state ishwy.
For a laser beam in a standing wave configuration (sethen the Hamiltonians are
Fig. 1), propagating along a direction specified by the unit

vectorn, the vector potential and its derivative are given by (EY — h(FVd 49417 1) (2|  h.a,, (44)
the formulas A2 = h2(F2k coshm(h)elt4—¢-0+Y2m111y (2] 4 h.a.

E . i 45
A\ (. ) = —€i — sin [k;m(o] d e, (33) (49)

@ E N ‘ Thus we have two basic types of Hamiltonian:
3 Aj (Xm, 1) = —Nnjej — cos[k;m(t)] €' +c.c. (34) _

¢ Ay = h2ed ™9 |1)(2| + h.a, (46)

In (34), | have approximated the laser beam as a plane wavey | — hk cosfgm(t)e ™) |1) (2| + h.a., (47)

€ being the polarization vectok is the amplitude of the
electric field, w is the laser frequency ankl= w/c is the

i o and he plane miror Used fo form the stancing wave,  BY Chanding the node to an aniinode, by moving the re-
P 9 flecting mirror, for example, we can switch from one type

2) Ifavr\]lg rﬁiatlr('gt t%‘ér f&g?i'ger\?vt;?g tg Jlljzttitc\)'\rl]o ?;?ateiﬁ’t:gctio r?f Hamiltonian to the other. In the first case, the laser beam
Ha,miltonians mav be rewri?ten as f0||C(I')WS' ’ will only interact with internal degrees of freedom of the ion,
y ' while in the second case the collective motion of the ions will

be affected as well.

where(2, stands for eithef2{™ or 23,

A =he™ sin[kin(® | €9°911) @2 +ha,  (39)

N (E2) _ 1 ~(E2) 2 i(tA—)
H™ =ihsZ cos[kgm(t)] e 2 +ha. (36) 4 Evaluation of the Rabi frequencies

where the detuning il = » — wz1 and the Rabi frequencies \y, .o relate the matrix elements appearing in the definitions

are given by of the Rabi frequencies to the Einstefncoefficients for the
eE transitions. In order to do this we will rewrite the matrix elem-

2 = T<1|ri 12)€i | (37) entsin terms of the Racah tensors:
eEwy; !

Q" = | (URif2en; | (38) (26 =Y @ArcP 2%, (48)

gq=-1
If the standing wave of the laser is so contrived that the 2

equilibrium position of themth ion is located at aode i.e.,  (1Ififj|2en; = > (1r’CP[2)c e, (49)

the electric field strength is zero, then g=-2

Zm(t) = 1 + COSOGm(D) (39)  where we have used the fact tkah = 0. The vectors@ and

the second rank tensoc.ﬁ” may be calculated quite easily;
wherel is some integer, is the wavelength, an@lis the an-  explicit expressions are given in the appendix. If we assume
gle between the laser beam and the trap axis and we haléScoupling, the stateld) and|2) are specified by the angular
assumed that the fluctuations of the ions transverse to the trapomentum quantum numbers; thus we will use the notation
axis are negligible. In this case the two Hamiltonians becomél) = | jm;) and|2) = | j'm;), wherej is the total angular mo-

mentum quantum number amdg; is the magnetic quantum
|:||<El> - hQéEDkcosgqm(t)ei<m—¢+ln> 11)(2| +h.a, (40)  humber of the lower state arjdis the total angular momen-
~ (E2) (E2) j[tA—p—(+1/2)7] tum quantum number and’ the magnetic quantum number
H™" =h2y ¢ 112/ +h.a, (41)  of the upper state. Using the Wigner—Eckart theorem ([19],
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Section 11.4), the matrix elements may be rewritten as The values of these quantities will be dependent on the
choice of states of ions used for the upper and lower levels,
A @ ! i1\ @ and upon the polarization and direction of the laser beam. As
(1Ifi[2)ei = (1]IrC*™[12) Z (—mj q m) G e, (50)  a specific example, we will assume that the ions are in a weak
g=-1 ’ magnetic field, which serves to define thdirection of quan-
2 A tization. Furthermore, we will assume that the lower lgdgl
(LIfifj|2en; = (1r?’C@(12) > < o ) cPen;, is them; = —1/2 sublevel of &S/, ground state, the nucleus
—m g ni) " =Y havi . ; I
q=—2 aving spin zero. The upper level for the dipole transition is

(51) asublevel of &Py, state, while for the quadrupole transition
it is a sublevel of &D3, state:
the terms containing six numbers in brackets being Wigner
3 j symbols ([19], Section 5.1), ar(d||qu(Q)_||_2) being the € €lE| A<l'31>
reduced matrix element. The Einstefncoefficients for the 25~ = “hV el
two levels are given by the expressions: oKz

(E2)
€2 _ ©El [ Ap
e doakd, & = . (62)
ALY = 22492 S e )’ 52 h Y 2cak3,

3

(61)

g=—1

£y cakd, & 2
K(lz ) — 1512 Z \(1|r2Cf12)|2)\ ) (53) 5 Validity of Cirac and Zoller’'s Hamiltonian
g=—2
_ _ _ ~ Equations (42) and (47) give the following expression for the
Using the Wigner—Eckart theorem again, these expressiomamiltonian for the case when the laser standing wave is so

reduce to the following: configured that it can excite the vibration modes of the ions:

—(E1) 4C0[|(3 2 ! J 1 j’ 2 N inth N . . .
A, = 72 |(1||rC(1>||2)| Z ( ) (54) Ay = ZS(“p) (apefn;pt _é][;elet) el(tA7¢u)|l><2|

—-mi g m TN
3 a=-1 a4 N o=
—(E2) _ Caky, 2@ (1 [2 2 i2 i\? +ha. (63)
A, =2 |@rC®12)" > (_m g m) - 65 _ _
15 = j am In their paper [3], Cirac and Zoller assumed that the laser can

interact with only the center of mass mode of the ions’ fluc-

These coefficients are the rates for spontaneous decdyations. This interaction forms a vitally important element
from the upper levell) to the lower level2). A simpler ex-  of their proposed method for implementing a quantum con-
pression for the total rate of spontaneous decaj?pfo all  trolled not logic gate. Thus they used a Hamiltonian of the
of the sublevels of the lower state may be found by summingpllowing form [cf. [3], Eq. (1)]:

these rates over all values f: N inh2 i j i
A2 = 220 (et —ald ) d4-m 1)

i 3 VN
— 4cak
A= D R =gy el se) +ha (64)
m:j_J This is an approximate form of (63), in which all of the other
AED _ Z AED _ caks, \(1||r2C(2)||2)\2 (57) “extraneous” phonon modes_have been neglected. We will
127 £2 712 T 52) + 1) : now investigate under what circumstances these modes may
m=- be ignored.

These decay rates, which are the same for all of the sublevels Ve Will gﬁs?\m? that the wavefunction for a S]inﬁle ion in-
of the upper level, are the quantities usually quoted in datifracting with the laser beam may be written as follows:

tables. Using (37), (38), (50), (51), (56) and (57), we therw,(t)) = ap(t)|1)|vac) + bo(t)|2) |vac)
obtain the following formula for the Rabi frequencies:

N N
6El [Py + D ep®ID)I1p) + ) bp()[2)[1p), (65)
WA (58) P =
12 where|1l) and|2) are the energy eigenstates of thth ion’s
where internal degrees of freedonl,y) is the state of the ions’ col-
lective vibration in which thepth mode has been excited by
. 1 . B . . )
321 +1 1 i one quantum, angbac) is the vibrational ground state. To
o'FY = \/ % Z <_mj_ n!f) Ci(Q)ei(Q) ) (59) avoid ambiguity, the ket for the ion’s internal state appears
g=—1 ! ! first, the ket for the vibrational state second.

The equation of motion for this wavefunction is

152)+1) | < j2 J") @@
(g2 _ 2Rl D cPen | . (60 .
o \/T 2\ —mj g m)cia’ni|. (60 ih 2 w(0) = Fulw) (66)

a=—
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By using (63), and assuming that one cannot excite states with
two phonons, one obtains the following equations:

o \ 0.8 | f
Vo = ——1 (P)
Go= "9 Xism Bo(®). (67) ol

" Z
. _ 2o (p) N
== ap(t), 68 0.4}
o= "N 25 (68)
dp = —i(vp—v)arp — %S(np)ﬁo(t) : (69) 0.2 r
, ) 0 | | | |
Bp=—1(vp+v1)Bp— Tol\?sﬁnp)ao(t) . (70) 0 " - = m

Number of Ions, N
We have assumed that = —v1, so that the laser is tuned to Fig.3. The function=(N) defined by (78)
the specific sideband resonance required to perform Cirac and
Zoller’s universal gate operation ([3], Eq. 3), namely, the two

50

level transition|1),|11) <> |2)n|vac). The functionX(N) is defined by the formula
Since|ao(t)], |Bo(t)] < 1, we can consider the following

upper limits on the amplitudes of the states which include ex- N po+1

citation of “extraneous” phonon modes (i.e., phonon modeg/(N) = Z piz (78)

other than the center of mass mode): p=2 (hp—D%/Mp

lap®] < [Ap®],  1Bp®] < [Bp®)], (71)  This must be evaluated numerically by solving for the eigen-
values of the trap normal modes for different numbers of

where trapped iondN. The results are shown in Fig. 3. The function

varies slowly with the value dfl, and, forN > 10, we can, to

A __ S20m _p a good approximation, replace it by a constakif\) ~ 0.82.
Ao+1(vp—v)Ap = TN (72) " Thus we obtain the following upper limit on the total proba-
. Qon bility of the “extraneous” phonon modes becoming excited:

= 2.69077)2
Pext < .
e (2580

Solving these equations one finds that

(79)

AD] 220m <) (74) Thus we obtain the following sufficiency condition for the va-
SIS |: lidity of Cirac and Zoller's Hamiltonian (64):
P «/N(Up— 1)1) Yy ( )
on 2.69201\?
IBp(h)| < —=———I5PI. (75) o7
VN@p+ 1) TN < 1. (80)
Thus the total probability that “extraneous” modes are excited
has the following upper limit:
N 6 Conclusion
Pext= ) _ lap®)1*+ | Bp()) In the preceding sections, we have reviewed the theoretical
p=2 basis for cold-trapped ion quantum computation. How these
200\ 2| N 1 various laser—ion interaction effects may be combined to per-
< 2< 0") Z L( <p>)2 . (76)  form fundamental quantum logic gates is described in the
VNv s (np—1)2 seminal work of Cirac and Zoller [3]. By using the formu-

las given here one can determine, for example, the laser field

where we have used the definition of the mode frequenciedrength required or the separation between ions in the trap.
(23) and the fact that the eigenvalue for the center of masauch things are of great importance in the engineering of

mode isu1 = 1. This quantity will be different for each ion in Practical devices.

the string; taking its average value, we find Finally there is the question of what type of ion to use.
Figure 4 shows the energy levels of four suitable species of

1N 20mm\ 2 ion. These have been chosen based on two criteria: that the
Pext= — Z Pext < 2( on) (N), (77) lowest excited state has a forbidden transition to the ground
N &~ VN state, and their popularity among published ion trapping ex-

periments. It is not intended that this is an exhaustive list of
where we have used the definition of the coupling consuitable ions, but rather it is to show the properties of typical

stants (28) and the orthonormality of the eigenvectors (15)ons.



Calcium II
Atomic Number 20
Mass number A =40 (96.7%)

T o

854.209nm [20]

4°p
172 101 nsec [23]

849.802nm [20]
901 nsec [23]

866.214nm [20] \
94,3 nsec [23]

3’Dsq

396.847nm [20]

7.740.2 nsec [22)] 3’Ds,,

729.147 nm [20]

393.3660m [20] 1 445 o 121]

7.440.3 nsec [22]

732.389 nm [20]
1.080 sec. [21}

4’8y,

Barium II
Atomic Number 56
Mass Number 138 (71.7%)

614.2nm [28]
2743 nsec [26]

585.4 nm [28]
210£30 nsec [26]

649.7 nm [28]
493.4 nm [28] 3044 nsec [26]

11£1 nsec [26]

455.4 nm (28]}
8.540.6 nsec [26] 2.051 pm [28]

17.5+4.0 sec. [30]

1.761 pm [28]
47£16 sec. [29]

6'S1/2
¢
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Strontium I1
Atomic Number 38
Mass number A = 88 (82.6%)

521’3/2

1033.01nm [24]

5°P,
1/2 115 nsec [26]

1003.94nm (24
901 nsec [26)

1091.79nm [24] \
105 nsec [26]

2
4°Ds),

421.6706nm [24]

7.87 nsec [26] 4’D,,,

674.025589 nm [25]

345133 msec. [27
407.886nm [24]
6.99 nsec [26)

687.0066 nm [24]
395138 msec. [27]

N 578,/
Mercury 11
Atomic Number 80
Mass Number 202 (29.8%)
(5410 6p}°P,,,
2
{54'°6p) Py 991.4 nm [36]

330£50 nsec [32]

10.67 pm [36]
3.020.5 psec [32]

{5d°6s2)2 D3,

398.0 nm [36]
164.9 nm [31] 4.040.6 nsec [32]
0.9530.07 nsec [32]

{54657}’ Ds,,

194.2 nm [31]

2.340.3 nsec [32] 197.8 nm [35]

0.02040.002 sec. {33]

281.576630.00005 nm [34]
0.098+0.005 sec. [33]

{5d1°6p}°S, ,,
d

Fig. 4. Energy level diagrams for four species of ions suitable for quantum computation. Wavelengths and lifetimes are given for the important transitions,
the numbers in square brackets being the reference for the data. The lifetime is the reciprocal of the Aowéfinient defined in (56) and (57). The thick

lines are dipole allowedH;) transitions, the thin lines quadrupole allowdgb) transitions. The atomic number and the mass number of the most abundant
isotope (with its relative abundance) are also given. None of these isotopes have a nuclear spin
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Appendix c@ . {dq’) }* =8qq - (A.5)

The vectors® are usual normalized spherical basis vectors:

1 . .
c® = —5(1, —i,0), (A1) The second rank tensoeg’ are given by the formula

mp,my=—1

c®=(0,01), (A2) s X L1 s
@ _ (My) (M)
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Explicity these five tensors are:

o 1 (10 1
c?=— (- -1 o], AT
TV A7
1 /0 0- 13
1) i 14
ci’=—( 0 0 i}, (A.8)
Ve <—1 i o) o
1 -1 0 17
0
@ = §( 8 _% é)), A9) 4
o 1 0O 0 1 19.
c V=" O 0 i), A.10
! Jé( 1 o) )
2 1 1 1 0 21.
c:. 7 =— i =1 0]. A.l11
1] \/é ( 0 0 0) ( ) 22.
Note that
23.
¢? = (-1)%; ¥ A.12
|J ( ) |J ’ ( . ) 24
/ * 2 '
@ | ~@)
ij
26
27
28
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